pH-Responsive Polyethylene Glycol Monomethyl Ether-ε-Polylysine-G-Poly (Lactic Acid)-Based Nanoparticles as Protein Delivery Systems
نویسندگان
چکیده
The application of poly(lactic acid) for sustained protein delivery is restricted by the harsh pH inside carriers. In this study, we synthesized a pH-responsive comb-shaped block copolymer, polyethylene glycol monomethyl ether-ε-polylysine-g-poly (lactic acid) (PEP)to deliver protein (bovine serum albumin (BSA)). The PEP nanoparticles could automatically adjust the internal pH to a milder level, as shown by the quantitative ratio metric results. The circular dichroism spectra showed that proteins from the PEP nanoparticles were more stable than those from poly(lactic acid) nanoparticles. PEP nanoparticles could achieve sustained BSA release in both in vitro and in vivo experiments. Cytotoxicity results in HL-7702 cells suggested good cell compatibility of PEP carriers. Acute toxicity results showed that the PEP nanoparticles induced no toxic response in Kunming mice. Thus, PEP nanoparticles hold potential as efficient carriers for sustained protein release.
منابع مشابه
Covalently stabilized temperature and pH responsive four-layer nanoparticles fabricated from surface ‘clickable’ shell cross-linked micelles
Alkynyl-terminated double hydrophilic ABC triblock copolymer, poly(oligo(ethylene glycol) monomethyl ether methacrylate)-b-poly(2-(dimethylamino) ethyl methacrylate)-b-poly(2(diethylamino) ethyl methacrylate) (alkynyl-POEGMA-b-PDMA-b-PDEA), was synthesized via atom transfer radical polymerization (ATRP) by sequential monomer addition using propargyl 2-bromoisobutyrate (PgBiB) as the initiator. ...
متن کاملCore-shell magnetic pH-responsive vehicle for delivery of poorly water-soluble rosuvastatin
Objective(s): Development of an oral sustained-controlled release vehicle which, slowly releases the drug and maintains an effective drug concentration for a long time is aimed.Materials and Methods: A biodegradable magnetic polymeric drug delivery vehicle, using superparamagnetic iron oxide nanoparticles encapsulating by polyvinylpyrrolidone-block-polyethylene glycol-block-poly methacrylic aci...
متن کاملHyperbranched PEG-based supramolecular nanoparticles for acid-responsive targeted drug delivery.
Herein, hyperbranched poly(ethylene glycol)-based supramolecular nanoparticles with pH-sensitive properties were designed and used for targeted drug delivery. Via host-guest recognition between benzimidazole anchored poly(ethylene glycol)-hyperbranched polyglycerol (PEG-HPG-BM) and folic acid modified CD (FA-CD), targeted supramolecular nanoparticles (TSNs) were fabricated. At neutral aqueous c...
متن کاملpH sensitive core-shell magnetic nanoparticles for targeted drug delivery in cancer therapy.
In the last decade, nanobiotechnology has evolved rapidly with an extensive impact on biomedical area. In order to improve bioavailability and minimize adverse effects, drug delivery systems based on magnetic nanocomposites are under development mainly for cancer imaging and antitumor therapy. In this regard, pH sensitive core-shell magnetic nanoparticles (NPs) with accurate controlled size and...
متن کاملPolymeric composite membranes for temperature and pH-responsive delivery of doxorubicin hydrochloride
Objective(s): Nowadays hydrogels are one of the upcoming classes of polymer-based controlled-release drug delivery systems. Temperature and pH-responsive delivery systems have drawn much attention because some diseases reveal themselves by a change in temperature and/or pH. The objective of this work is to prepare and characterize composite membrane using responsive nanoparticles into a polymer...
متن کامل